Predicting the impact of no. of authors on no. of citations of research publications based on neural networks

Author:

Talaat Fatma M.,Gamel Samah A.ORCID

Abstract

AbstractAny work's citations are regarded as a key characteristic that leads to its appraisal and study. Citations are one of the most important indicators of a research publication's quality. Citations can have a favorable or bad impact on any piece of work or publication depending on a variety of circumstances, including author skill, publication venue, research topic, and so on. The goal of this study is to see how the number of co-authors affects the number of citations in research papers. There will be a correlation analysis between the number of co-authors and the number of citations for research articles, and we will observe how the number of co-authors affects the number of citations for publications. Citation data is gathered from databases such as DBLP, ACM, MAG (Microsoft Academic Graph), and others. There are 629,814 papers and 632,752 citations in the initial version. We use two methods to examine the impact of co-author count on the number of citations in a research paper: (i) Pearson’s correlation coefficient (PCC), and (ii) multiple regression (MR). To test the impact of co-author count on citation count of research publications, we calculate Pearson’s correlation coefficient (ra) between the two variables number of authors (NA) and citation count (CC). We also calculate Pearson’s correlation coefficient between the citation count (CC) and the most effective variables to compare between the impact of the number of authors and the impact of the other factors such as (i) rc between number of countries (NC) and citation count (CC). (ii) rv between venue category (VC) and citation count (CC). (iii) ry between Year_From (YF) and citation count (CC). Empirical evidence shows that co-authored publications achieve higher visibility and impact. To predict the number of citations from the previously mentioned factors (NA, NC, VC, and YF), we use multiple linear regression (MLR). The goal of multiple linear regression (MLR) is to model the linear relationship between the explanatory (independent) variables and response (dependent) variables. The higher R-square, the tight relationship exists between dependent variables and independent variables. It is observed that the R-square decreases in the case of removing NA which means that the NA is the most influential factor (the relation between NA and CC is the most powerful relation). The main originality of this paper is to introduce an effective prediction module (EPM) which uses probabilistic neural network (PNN) to predict the number of citations from the most effective factors (NA, NC, VC, and YF).

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3