Content based video retrieval using deep learning feature extraction by modified VGG_16
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-022-03869-y.pdf
Reference16 articles.
1. Ahanger G, Little TD (1996) A survey of technologies for parsing and indexing digital video1. J Vis Commun Image Represent 7(1):28–43
2. Fablet R, Bouthemy P, Pérez P (2002) Nonparametric motion characterization using causal probabilistic models for video indexing and retrieval. IEEE Trans Image Process 11(4):393–407
3. Ferman AM, Tekalp AM, Mehrotra R (2002) Robust color histogram descriptors for video segment retrieval and identification. IEEE Trans Image Process 11(5):497–508
4. Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Yanker P (1995) Query by image and video content: the QBIC system. Computer 28(9):23–32
5. Hong S, Im W, Yang HS (2018) Cbvmr: content-based video-music retrieval using soft intra-modal structure constraint. In: Proceedings of the 2018 ACM on international conference on multimedia retrieval, pp 353–361
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An intelligent surgical video retrieval for computer vision enhancement in medical diagnosis using deep learning techniques;Multimedia Tools and Applications;2024-05-29
2. Enhancement of video condensation with video browsing and retrieval for surveillance videos using heuristic-derived deep learning algorithm;Intelligent Decision Technologies;2023-07-31
3. Research on Effective Segment Extraction of Ship Surveillance Videos;2023 19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD);2023-07-29
4. Construction of law and economics litigation service platform based on multimedia retrieval;Applied Mathematics and Nonlinear Sciences;2023-07-01
5. A Deep Learning-Based Real-Time Video Object Contextualizing and Archiving System;2023 25th International Conference on Advanced Communication Technology (ICACT);2023-02-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3