Distributional learning in multi-objective optimization of recommender systems

Author:

Candelieri Antonio,Ponti AndreaORCID,Giordani Ilaria,Bosio Anna,Archetti Francesco

Abstract

AbstractMetrics such as diversity and novelty have become important, beside accuracy, in the design of Recommender Systems (RSs), in response the increasing users' heterogeneity. Therefore, the design of RSs is now increasingly modelled as a multi-objective optimization problem (MOP) for whose solution Multi-objective evolutionary algorithms (MOEAs) have been increasingly considered. In this paper we focus on the k-top recommendation problem in which a solution is encoded as a matrix whose rows correspond to customers and column to items. The value of accuracy, novelty, and coverage for each candidate list, is evaluated as a sample and can be represented as a 3-d histogram which encodes the knowledge obtained from function evaluations. This enables to map the solution space into a space, whose elements are histograms, structured by the Wasserstein (WST) distance between histograms. The similarity between 2 users in this probabilistic space is given by the Wasserstein distance between their histograms. This enables the construction of the WST graph whose nodes are the users and the weights of the edges are the WST distance between users. The clustering of users takes then place in the WST-graph. In the optimization phase the difference between two top-k lists can be encoded as the WST distance between their 3-dimensional histograms. This enables to derive new selection operators which provide a better diversification (exploration). The new algorithm Multi-objective evolutionary optimization/Wasserstein (MOEA/WST), compared with the benchmark NSGA-II, yields better hypervolume and coverage, in particular at low generation counts.

Funder

Open access funding provided by Università degli Studi di Milano - Bicocca within the CRUI-CARE Agreement

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference50 articles.

1. Abdollahpouri H, Mansoury M, Burke R, Mobasher B (2019) The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286

2. Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc: Series B (Methodologic) 44(2):139–160

3. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR, pp 214–223

4. Atasu K, Mittelholzer T (2019) Linear-complexity data-parallel earth mover’s distance approximations. In: International Conference on machine learning. PMLR, pp 364–373

5. Backurs A, Dong Y, Indyk P, Razenshteyn I, Wagner T (2020) Scalable nearest neighbour search for optimal transport. In: International Conference on machine learning, vol 119. PMLR, pp 497–506

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective Evolutionary Algorithms in Recommender Systems;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3