Augmenting robot intelligence via EEG signals to avoid trajectory planning mistakes of a smart wheelchair

Author:

Ferracuti FrancescoORCID,Freddi Alessandro,Iarlori Sabrina,Longhi Sauro,Monteriù Andrea,Porcaro Camillo

Abstract

AbstractAssistive robots operate in complex environments and in presence of human beings, but the interaction between them can be affected by several factors, which may lead to undesired outcomes: wrong sensor readings, unexpected environmental conditions, or algorithmic errors represent just a few examples of the possible scenarios. When the safety of the user is not only an option but must be guaranteed, a feasible solution is to rely on a human-in-the-loop approach, e.g., to monitor if the robot performs a wrong action during a task execution or environmental conditions affect safety during the human-robot interaction, and provide a feedback accordingly. The present paper proposes a human-in-the-loop framework to enable safe autonomous navigation of an electric powered and sensorized (smart) wheelchair. During the wheelchair navigation towards a desired destination in an indoor scenario, possible problems (e.g. obstacles) along the trajectory cause the generation of electroencephalography (EEG) potentials when noticed by the user. These potentials can be used as additional inputs to the navigation algorithm in order to modify the trajectory planning and preserve safety. The framework has been preliminarily tested by using a wheelchair simulator implemented in ROS and Gazebo environments: EEG signals from a benchmark known in the literature were classified, passed to a custom simulation node, and made available to the navigation stack to perform obstacle avoidance.

Funder

Università Politecnica delle Marche

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OPTIMIZATION OF END TRAJECTORY OF MEDICAL ROBOT ARM BASED ON HUMAN BIOMIMETICS;Journal of Mechanics in Medicine and Biology;2024-08-24

2. Research on Intelligent Wheelchair Multimode Human–Computer Interaction and Assisted Driving Technology;Actuators;2024-06-20

3. A deep neural network and transfer learning combined method for cross-task classification of error-related potentials;Frontiers in Human Neuroscience;2024-06-12

4. Human–Robot Coordination and Collaboration in Industry 4.0;Disruptive Technologies and Digital Transformations for Society 5.0;2024

5. Mental Fatigue Evaluation for Passive and Active BCI Methods for Wheelchair-Robot During Human-in-the-Loop Control;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3