Machine learning techniques for the Schizophrenia diagnosis: a comprehensive review and future research directions
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-023-04536-6.pdf
Reference75 articles.
1. Algumaei AH, Algunaid RF, Rushdi MA, Yassine IA (2022) Feature and decision-level fusion for schizophrenia detection based on resting-state fmri data. Plos One 17(5):e0265300
2. Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297
3. Arbabshirani MR, Kiehl K, Pearlson G, Calhoun VD (2013) Classification of schizophrenia patients based on resting-state functional network connectivity. Front Neurosci 7:133
4. ArivuSelvan K, Moorthy ES (2020) Analysing thalamus and its sub nuclei in MRI brain image to distinguish schizophrenia subjects using back propagation neural network. Int J Internet Technol Secur Trans 10(1–2):196–210
5. Aslan Z, Akin M (2022) A deep learning approach in automated detection of schizophrenia using scalogram images of eeg signals. Phys Eng Sci Med 45(1):83–96
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EEG-based Signatures of Schizophrenia, Depression, and Aberrant Aging: A Supervised Machine Learning Investigation;Schizophrenia Bulletin;2024-09-09
2. Aberrant patterns of spontaneous brain activity in schizophrenia: A resting-state fMRI study and classification analysis;Progress in Neuro-Psychopharmacology and Biological Psychiatry;2024-08
3. An effective diagnosis of schizophrenia using kernel ridge regression-based optimized RVFL classifier;Applied Soft Computing;2024-05
4. Comparative analysis of Pearson and Canonical correlation-based functional connectivity matrices for neuroimaging classification tasks;2024-04-28
5. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders;Frontiers in Neuroscience;2024-02-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3