Computer aided diagnosis of brain tumor using novel classification techniques
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02429-6.pdf
Reference22 articles.
1. Akram UM, Anam U (2011) Computer aided system for brain tumor detection and segmentation. In: 2011 international conference on computer networks and information technology (ICCNIT). IEEE, pp 299–302
2. Al-Kadi OS (2015) A multiresolution clinical decision support system based on fractal model design for classification of histological brain tumours. Comput Med Imaging Graph 41:67–79
3. Amin J, Sharif M, Raza M, Yasmin M (2018) Detection of brain tumor based on features fusion and machine learning. J Ambient Intell Humaniz Comput 1–17
4. Bahadure NB, Arun KR, Har PT (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging
5. Demirhan A, Mustafa T, Inan G (2015) Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inform 19(4):1451–1458
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detection and Classification of Brain Tumor Using Convolution Extreme Gradient Boosting Model and an Enhanced Salp Swarm Optimization;Neural Processing Letters;2024-04-02
2. Explainable Deep Learning Approach for Multi-Class Brain Magnetic Resonance Imaging Tumor Classification and Localization Using Gradient-Weighted Class Activation Mapping;Information;2023-11-30
3. EXplainable Artificial Intelligence (XAI) for MRI brain tumor diagnosis: A survey;2023 International Conference on Cyberworlds (CW);2023-10-03
4. Advancements and emerging trends in brain tumor classification using MRI: a systematic review;Network Modeling Analysis in Health Informatics and Bioinformatics;2023-09-09
5. A Systematic Study of Artificial Intelligence-Based Methods for Detecting Brain Tumors;Informatics and Automation;2023-05-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3