Stacking ensemble model of deep learning for plant disease recognition
Author:
Funder
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-022-04334-6.pdf
Reference41 articles.
1. Atoum Y, Afridi MJ, Liu X, McGrath JM, Hanson LE (2016) On developing and enhancing plant-level disease rating systems in real fields. Pattern Recognit 53:287–299
2. Barbedo JG (2018) Factors influencing the use of deep learning for plant disease recognition. Biosyst Eng 172:84–91
3. Chen J, Wang W, Zhang D, Zeb A, Nanehkaran YA (2021a) Attention embedded lightweight network for maize disease recognition. Plant Pathol 70(3):630–642
4. Chen J, Zhang D, Suzauddola M, Nanehkaran YA, Sun Y (2021b) Identification of plant disease images via a squeeze-and-excitation MobileNet model and twice transfer learning. IET Image Proc 15(5):1115–1127
5. Chen J, Zhang D, Zeb A, Nanehkaran YA (2021c) Identification of rice plant diseases using lightweight attention networks. Expert Syst Appl 169:1–12
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advanced diagnosis of common rice leaf diseases using KERTL-BME ensemble approach;Journal of Real-Time Image Processing;2024-08
2. Cross-comparative review of Machine learning for plant disease detection: apple, cassava, cotton and potato plants;Artificial Intelligence in Agriculture;2024-06
3. FloraNet: An Approach to Prediction of Sea Buckthorn Disease based on a Convolutional Neural Network and a Random Forest Method;2024 5th International Conference for Emerging Technology (INCET);2024-05-24
4. Maize leaf disease recognition using PRF-SVM integration: a breakthrough technique;Scientific Reports;2024-05-03
5. Deep learning and content-based filtering techniques for improving plant disease identification and treatment recommendations: A comprehensive review;Heliyon;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3