Sentiment topic sarcasm mixture model to distinguish sarcasm prevalent topics based on the sentiment bearing words in the tweets

Author:

Nimala K.,Jebakumar R.,Saravanan M.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference25 articles.

1. Barbieri F, Saggion H (2014) Modelling irony in twitter. In Proceedings of the student research workshop at the 14th conference of the European chapter of the association for computational linguistics, 2014, pp 56–64

2. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res, pp 993–1022

3. Bouazizi M, Ohtsuki T (2014) Sarcasm Detection in Twitter :"All products are Incredibly amazing !!!"-Are they really?. Keio University, Japan, IEEE Global Communications conference

4. Chun-Che P, Mohammad L, Jan WP (2015) Detecting sarcasm in text : an obvious solution to a trivial problem. In: Stanford CS 229 machine learning

5. Fersini E, Pozzi FA, Messina E (2015) Detecting irony and sarcasm in micro blogs: the role of expressive signals and ensemble classifiers. In: Proceedings of IEEE international conference on data science and advanced analytics, 2015, pp 1–8

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning based sarcasm detection and classification model;Journal of Intelligent & Fuzzy Systems;2024-01-10

2. Navigating the Sentiment Analysis Landscape: Methodologies and Use Cases in Social Media Analysis;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15

3. Integrating Text and Emoticons for Detecting Extremist Affiliations on Twitter using Deep Learning;2023 International Conference on Advanced Computing Technologies and Applications (ICACTA);2023-10-06

4. Intelligent personalised learning system based on emotions in e-learning;Personal and Ubiquitous Computing;2023-09-21

5. Allocation of cloud resources based on prediction and performing auto-scaling of workload;2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF);2023-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3