Consensus and majority vote feature selection methods and a detection technique for web phishing
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02054-3.pdf
Reference33 articles.
1. Abutair H, Belghith A, AlAhmadi S (2019) Cbr-pds: a case-based reasoning phishing detection system. J Ambient Intell Hum Comput 10(7):2593–2606
2. Bahnsen AC, Bohorquez EC, Villegas S, Vargas J, González FA (2017) Classifying phishing urls using recurrent neural networks. In: 2017 APWG symposium on electronic crime research (eCrime), IEEE, pp 1–8
3. Basnet RB, Sung AH, Liu Q (2012) Feature selection for improved phishing detection. In: International Conference on Industrial. Springer, Engineering and Other Applications of Applied Intelligent Systems, pp 252–261
4. Chiew KL, Tan CL, Wong K, Yong KS, Tiong WK (2019) A new hybrid ensemble feature selection framework for machine learning-based phishing detection system. Inf Sci 484:153–166
5. Feng F, Zhou Q, Shen Z et al (2018) The application of a novel neural network in the detection of phishing websites. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-018-0786-3
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ensemble Learning Approach for Phishing Website Detection Using an Optimal Greedy Stacking Model;Journal of The Institution of Engineers (India): Series B;2024-09-12
2. E-Commerce Detectives: A Scam Website Detection Application Using Machine Learning;2024 IEEE 6th Symposium on Computers & Informatics (ISCI);2024-08-10
3. Enhancing Security in Cloud Computing Using Artificial Intelligence ( AI );Applying Artificial Intelligence in Cybersecurity Analytics and Cyber Threat Detection;2024-03-22
4. Feature importance feedback with Deep Q process in ensemble-based metaheuristic feature selection algorithms;Scientific Reports;2024-02-05
5. Artificial intelligence for cybersecurity: Literature review and future research directions;Information Fusion;2023-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3