TextSpamDetector: textual content based deep learning framework for social spam detection using conjoint attention mechanism
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02640-5.pdf
Reference46 articles.
1. Ahmed F, Abulaish M (2013) A generic statistical approach for spam detection in online social networks. Comput Commun 3610–11:1120–1129
2. Ala’M AZ et al (2018) Evolving support vector machines using whale optimization algorithm for spam profiles detection on online social networks in different lingual contexts. Knowl Based Syst 153:91–104
3. Alghamdi B, Watson J, Xu Y (2016) Toward detecting malicious links in online social networks through user behavior. In: 2016 IEEE/WIC/ACM international conference on web intelligence workshops (WIW)
4. Almeida TA et al (2016) Text normalization and semantic indexing to enhance instant messaging and SMS spam filtering. Knowl Based Syst 108:25–32
5. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Beyond Word-Based Model Embeddings: Contextualized Representations for Enhanced Social Media Spam Detection;Applied Sciences;2024-03-07
2. Detection of Twitter Spam Using GLoVe Vocabulary Features, Bidirectional LSTM and Convolution Neural Network;SN Computer Science;2024-01-13
3. AI Methods Used for Spam Detection in Social Systems - An Overview;2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS);2023-11-21
4. Deep Learning Approaches for Cyber Threat Detection and Mitigation;Proceedings of the 2023 7th International Conference on Advances in Artificial Intelligence;2023-10-13
5. An efficient spam detector model for accurate categorization of spam tweets using quantum chaotic optimization-based stacked recurrent network;Nonlinear Dynamics;2023-08-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3