New incremental SVM algorithms for human activity recognition in smart homes

Author:

Nawal Yala,Oussalah MouradORCID,Fergani Belkacem,Fleury Anthony

Abstract

AbstractSmart homes are equipped with several sensor networks to keep an eye on both residents and their environment, to interpret the current situation and to react immediately. Handling large scale dataset of sensory events on real time to enable efficient interventions is challenging and very difficult. To deal with these data flows and challenges, traditional streaming data classification approaches can be boosted by use of incremental learning. In this paper, we presented two new Incremental SVM methods to improve the performance of SVM classification in the context of human activity recognition tasks. Two feature extraction methods elaborated by refining dependency sensor extraction feature and focusing on the last sensor event only have been suggested. On the other hand, a clustering based approach and a similarity based approach have been suggested to boost learning performance of the incremental SVM algorithms capitalizing on the relationship between data chunk and support vectors of previous chunk. We demonstrate through several simulations on two major publicly available data sets (Aruba and Tulum), the feasibility and improvements in learning and classification performances in real time achieved by our proposed methods over the state-of-the-art. For instance, we have shown that the introduced similarity-based incremental learning is 5 to 9 times faster than other methods in terms of training performances. Similarly, the introduced Last-state sensor feature method induces at least 5% improvement in terms of F1-score when using baseline SVM classifier.

Funder

EU

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hand-Crafted Features With a Simple Deep Learning Architecture for Sensor-Based Human Activity Recognition;IEEE Sensors Journal;2024-09-01

2. TriFusion hybrid model for human activity recognition;Signal, Image and Video Processing;2024-08-12

3. Detección de actividades mediante modelos ocultos de Markov jerárquicos;Jornadas de Automática;2024-07-12

4. Generalization bounds of incremental SVM;International Journal of Wavelets, Multiresolution and Information Processing;2024-06-27

5. Entropy and Memory Aware Active Transfer Learning in Smart Sensing Systems;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3