Prediction of students’ procrastination behaviour through their submission behavioural pattern in online learning
Author:
Funder
ASTRA per ASPERA
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
http://link.springer.com/content/pdf/10.1007/s12652-020-02041-8.pdf
Reference47 articles.
1. Abu Tair MM, El-Halees AM (2012) Mining educational data to improve students’ performance: a case study. Min Educ Data Improve Stud Perform Case Study 2
2. Ackerman DS, Gross BL (2005) My instructor made me do it: task characteristics of procrastination. J Mark Educ 27:5–13
3. Ahmad F, Ismail NH, Aziz AA (2015) The prediction of students’ academic performance using classification data mining techniques
4. Akram A, Fu C, Li Y et al (2019) Predicting students’ academic procrastination in blended learning course using homework submission data. IEEE Access 7:102487–102498. https://doi.org/10.1109/ACCESS.2019.2930867
5. Azevedo R, Cromley JG, Winters FI et al (2005) Adaptive human scaffolding facilitates adolescents’ self-regulated learning with hypermedia. Instr Sci 33:381–412. https://doi.org/10.1007/s11251-005-1273-8
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Memory-Based Dynamic Bayesian Networks for Learner Modeling: Towards Early Prediction of Learners’ Performance in Computational Thinking;Education Sciences;2024-08-21
2. Predictive analysis of college students’ academic procrastination behavior based on a decision tree model;Humanities and Social Sciences Communications;2024-07-03
3. The Temporal Dynamics of Procrastination and its Impact on Academic Performance: The Case of a Task-oriented Programming Course;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08
4. Evaluating Boosting Algorithms for Academic Performance Prediction in E-Learning Environments;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24
5. Early Prediction of Students’ Performance Using a Deep Neural Network Based on Online Learning Activity Sequence;Applied Sciences;2023-08-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3