A multistep priority-based ranking for top-N recommendation using social and tag information
Author:
Funder
MHRD
IIT Gandhinagar
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02388-y.pdf
Reference74 articles.
1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749
2. Agarwal N, Haque E, Liu H, Parsons L (2005) Research paper recommender systems: A subspace clustering approach. In: International Conference on Web-Age Information Management, Springer, pp 475–491
3. Balakrishnan S, Chopra S (2012) Collaborative ranking. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, ACM, New York, NY, USA, WSDM ’12, pp 143–152, https://doi.org/10.1145/2124295.2124314
4. Barjasteh I, Forsati R, Ross D, Esfahanian AH, Radha H (2016) Cold-start recommendation with provable guarantees: A decoupled approach. IEEE Trans Knowl Data Eng 28(6):1462–1474
5. Bell RM, Koren Y (2007) Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In: Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on, IEEE, pp 43–52
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Robust Sequential Recommendation Model Based on Multiple Feedback Behavior Denoising and Trusted Neighbors;Neural Processing Letters;2024-02-02
2. RDERL: Reliable deep ensemble reinforcement learning-based recommender system;Knowledge-Based Systems;2023-03
3. User structural information in priority-based ranking for top-N recommendation;Advances in Computational Intelligence;2023-01-06
4. Toward Sequential Recommendation Model for Long-Term Interest Memory and Nearest Neighbor Influence;Wireless Communications and Mobile Computing;2022-09-27
5. SIITR: A Semantic Infused Intelligent Approach for Tag Recommendation;Communications in Computer and Information Science;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3