Preliminary performance study of a brief review on machine learning techniques for analogy based software effort estimation
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-021-03427-y.pdf
Reference102 articles.
1. Abnane I, Hosni M, Idri A and Abran A (2019) Analogy software effort estimation using ensemble KNN imputation. In: 2019 45th Euromicro Conference on software engineering and advanced applications (SEAA). IEEE, pp 228–235
2. Abulalqader FA, Ali AW (2018). Comparing Different Estimation Methods for Software Effort. In: 2018 1st Annual International Conference on information and sciences (AiCIS). IEEE, pp 13–22
3. Ahmed MA, Muzaffar Z (2009) Handling imprecision and uncertainty in software development effort prediction: A type-2 fuzzy logic based framework. Inf Softw Technol 51(3):640–654
4. Alpaydin E (2004) Introduction to machine learning. The MIT Press, Cambridge
5. Amazal FA, Idri A, Abran A (2014a) An analogy-based approach to estimation of software development effort using categorical data. In: 2014 Joint Conference of the International Workshop on Software Measurement and the International Conference on software process and product measurement. IEEE, pp 252–262
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimized Convolutional Neural Network Model for Software Effort Estimation;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18
2. Prediction of pedestrian crossing behaviour at unsignalized intersections using machine learning algorithms: analysis and comparison;Journal on Multimodal User Interfaces;2024-05-28
3. Improvement and reduce risk of failure part -casting by multi-domain matrix- process failure modes and effects analysis based verband der automobilindustrie and design of experiment;International Journal of System Assurance Engineering and Management;2024-04-29
4. Data analytics for project delivery: unlocking the potential of an emerging field;International Journal of Managing Projects in Business;2024-04-02
5. A Deep Learning Based Breast Cancer Classification System Using Mammograms;Journal of Electrical Engineering & Technology;2023-12-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3