A hybrid ARIMA-LSTM model optimized by BP in the forecast of outpatient visits
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02602-x.pdf
Reference32 articles.
1. Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco. https://doi.org/10.1080/00401706.1977.10489562
2. Dechanont S, Jedsadayanmata A, Butthum B, Kongkaew C (2018) Hospital outpatient visits associated with medication-related problems in Thailand: a multicenter prospective observational study. J Patient Saf. https://doi.org/10.1097/PTS.0000000000000367
3. Flores JJ, Rodriguez H, Graff M (2010) Reducing the search space in evolutive design of ARIMA and ANN models for time series prediction. Adv Soft Comput. https://doi.org/10.1007/978-3-642-16773-7_28
4. Gers F, Eck D (2010) Applying LSTM to time series predictable through time-window approaches. Int Conf Artif Neural Netw. https://doi.org/10.1007/3-540-44668-0_93
5. Hadavandi E, Shavandi H, Ghanbari A, Abbasian-Naghneh S (2012) Developing a hybrid artificial intelligence model for outpatient visits forecasting in hospitals. Appl Soft Comput 12:700–711. https://doi.org/10.1016/j.asoc.2011.09.018
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Daily Outpatient Volume Using Ensemble Empirical Mode Decomposition and Long-Short Term Memory During the Incident;2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE);2024-06-19
2. Leveraging Partner Country Factors in Deep Learning for Thailand’s Forecasted Inflation Accuracy Enhancement;Engineering Journal;2024-06
3. Enhancing Time Series Data Predictions: A Survey of Augmentation Techniques and Model Performances;Proceedings of the 2024 Australasian Computer Science Week;2024-01-29
4. An Optimized Hybrid ARIMA-LSTM Model for Time Series Forecasting of Agricultural Production in India;Microorganisms for Sustainability;2024
5. The Future of Bitcoin Price Predictions Integrating Deep Learning and the Hybrid Model Method;Proceedings of the 7th International Conference on Future Networks and Distributed Systems;2023-12-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3