Social mining for sustainable cities: thematic study of gender-based violence coverage in news articles and domestic violence in relation to COVID-19

Author:

Manzoor Muhammad Asad,Hassan Saeed-UlORCID,Muazzam Amina,Tuarob Suppawong,Nawaz Raheel

Abstract

AbstractWe argue that social computing and its diverse applications can contribute to the attainment of sustainable development goals (SDGs)—specifically to the SDGs concerning gender equality and empowerment of all women and girls, and to make cities and human settlements inclusive. To achieve the above goals for the sustainable growth of societies, it is crucial to study gender-based violence (GBV) in a smart city context, which is a common component of violence across socio-economic groups globally. This paper analyzes the nature of news articles reported in English newspapers of Pakistan, India, and the UK—accumulating 12,693 gender-based violence-related news articles. For the qualitative textual analysis, we employ Latent Dirichlet allocation for topic modeling and propose a Doc2Vec based word-embeddings model to classify gender-based violence-related content, called GBV2Vec. Further, by leveraging GBV2Vec, we also build an online tool that analyzes the sensitivity of Gender-based violence-related content from the textual data. We run a case study on GBV concerning COVID-19 by feeding the data collected through Google News API. Finally, we show different news reporting trends and the nature of the gender-based violence committed during the testing times of COVID-19. The approach and the toolkit that this paper proposes will be of great value to decision-makers and human rights activists, given the prompt and coordinated performance against gender-based violence in smart city context—and can contribute to the achievement of SDGs for sustainable growth of human societies.

Funder

Manchester Metropolitan University

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3