Author:
Wang Bin,Wei Xianglin,Wang Chao,Li Junnan,Jiao Xiang,Fan Jianhua,Li Peng
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Bablani D, Mckinstry JL, Esser SK, Appuswamy R, Modha DS (2023) Efficient and effective methods for mixed precision neural network quantization for faster, energy-efficient inference. arXiv preprint arXiv:2301.13330arXiv:2301.13330
2. Chen J, Liu L, Liu Y, Zeng X (2020) A learning framework for n-bit quantized neural networks toward fpgas. IEEE Trans Neural Netw Learn Syst 32(3):1067–1081
3. Choi J, Kong BY, Park I-C (2020) Retrain-less weight quantization for multiplier-less convolutional neural networks. IEEE Trans Circuits Syst I Regul Pap 67(3):972–982
4. Deng C, Sui Y, Liao S, Qian X, Yuan B (2021) Gospa: an energy-efficient high-performance globally optimized sparse convolutional neural network accelerator. In: 2021 ACM/IEEE 48th Annual International Symposium on computer architecture (ISCA), pp 1110–1123. IEEE
5. Dong P, Wang S, Niu W, Zhang C, Lin S, Li Z, Gong Y, Ren B, Lin X, Tao D (2020) Rtmobile: beyond real-time mobile acceleration of rnns for speech recognition. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp 1–6. IEEE