Hybrid Grey Wolf: Bald Eagle search optimized support vector regression for traffic flow forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02182-w.pdf
Reference36 articles.
1. Abdulhai B, Porwal H, Recker W (2002) Short-term traffic flow prediction using neuro-genetic algorithms. J Intell Transport Syst Technol Plan Oper 7(1):3–41
2. Al Shorman A, Faris H, Aljarah I (2019) Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection. J Amb Intell Hum Comput. https://doi.org/10.1007/s12652-019-01387-y
3. Alsattar HA, Zaidan AA, Zaidan BB (2019) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev
4. Anitha P, Kaarthick B (2019) Oppositional based Laplacian grey wolf optimization algorithm with SVM for data mining in intrusion detection system. J Amb Intell Hum Comput. https://doi.org/10.1007/s12652-019-01606-6
5. Bidisha G, Biswajit B, Margaret O (2007) Bayesian time-series model for short-term traffic flow forecasting. J Transport Eng 133(3):180–189
Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A multi-factor combined traffic flow prediction model with secondary decomposition and improved entropy weight method;Expert Systems with Applications;2024-12
2. Confined attention mechanism enabled Recurrent Neural Network framework to improve traffic flow prediction;Engineering Applications of Artificial Intelligence;2024-10
3. Grey Wolf optimization supported vector regression prediction model based on variational mode decomposition;Fourth International Conference on Sensors and Information Technology (ICSI 2024);2024-05-06
4. Adaptive channel equalisation using different hybrid metaheuristic algorithms in digital communication;International Journal of Autonomous and Adaptive Communications Systems;2024
5. A hybrid approach for portfolio construction: Combing two‐stage ensemble forecasting model with portfolio optimization;Computational Intelligence;2023-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3