Exploratory approach for network behavior clustering in LoRaWAN

Author:

Garlisi DomenicoORCID,Martino AlessioORCID,Zouwayhed Jad,Pourrahim Reza,Cuomo FrancescaORCID

Abstract

AbstractThe interest in the Internet of Things (IoT) is increasing both as for research and market perspectives. Worldwide, we are witnessing the deployment of several IoT networks for different applications, spanning from home automation to smart cities. The majority of these IoT deployments were quickly set up with the aim of providing connectivity without deeply engineering the infrastructure to optimize the network efficiency and scalability. The interest is now moving towards the analysis of the behavior of such systems in order to characterize and improve their functionality. In these IoT systems, many data related to device and human interactions are stored in databases, as well as IoT information related to the network level (wireless or wired) is gathered by the network operators. In this paper, we provide a systematic approach to process network data gathered from a wide area IoT wireless platform based on LoRaWAN (Long Range Wide Area Network). Our study can be used for profiling IoT devices, in order to group them according to their characteristics, as well as detecting network anomalies. Specifically, we use the k-means algorithm to group LoRaWAN packets according to their radio and network behavior. We tested our approach on a real LoRaWAN network where the entire captured traffic is stored in a proprietary database. Quite important is the fact that LoRaWAN captures, via the wireless interface, packets of multiple operators. Indeed our analysis was performed on 997, 183 packets with 2169 devices involved and only a subset of them were known by the considered operator, meaning that an operator cannot control the whole behavior of the system but on the contrary has to observe it. We were able to analyze clusters’ contents, revealing results both in line with the current network behavior and alerts on malfunctioning devices, remarking the reliability of the proposed approach.

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3