Abstract
AbstractPower companies are responsible for producing and transferring the required amount of electricity from grid stations to individual households. Many countries suffer huge losses in billions of dollars due to non-technical loss (NTL) in power supply companies. To deal with NTL, many machine learning classifiers have been employed in recent time. However, few has been studied about the performance evaluation metrics that are used in NTL detection to evaluate how good or bad the classifier is in predicting the non-technical loss. This paper first uses three classifiers: random forest, K-nearest neighbors and linear support vector machine to predict the occurrence of NTL in a real dataset of an electric supply company containing approximately 80,000 monthly consumption records. Then, it computes 14 performance evaluation metrics across the three classifiers and identify the key scientific relationships between them. These relationships provide insights into deciding which classifier can be more useful under given scenarios for NTL detection. This work can be proved to be a baseline not only for the NTL detection in power industry but also for the selection of appropriate performance evaluation metrics for NTL detection.
Funder
Deanship of Scientific Research, King Saud University
European Union and the European Social Fund
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献