Detecting deviations from activities of daily living routines using kinect depth maps and power consumption data
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
http://link.springer.com/content/pdf/10.1007/s12652-019-01447-3.pdf
Reference33 articles.
1. Alcalá J, Parson O, Rogers A (2015) Detecting anomalies in activities of daily living of elderly residents via energy disaggregation and cox processes. In: Proceedings of the 2nd ACM international conference on embedded systems for energy-efficient built environments, ACM, pp 225–234
2. Banerjee T, Keller JM, Popescu M, Skubic M (2015) Recognizing complex instrumental activities of daily living using scene information and fuzzy logic. Comput Vis Image Underst 140:68–82
3. Belley C, Gaboury S, Bouchard B, Bouzouane A (2014) An efficient and inexpensive method for activity recognition within a smart home based on load signatures of appliances. Pervasiv Mob Comput 12:58–78
4. Cho HS, Yamazaki T, Hahn M (2010) AERO: extraction of user’s activities from electric power consumption data. Consumer Electron IEEE Trans 56:2011–2018
5. Claes V, Devriendt E, Tournoy J, Milisen K (2015) Attitudes and perceptions of adults of 60 years and older towards in-home monitoring of the activities of daily living with contactless sensors: an explorative study. Int J Nurs Stud 52:134–148
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modelling Activities of Daily Living Using Local Interpretable Model-Agnostic Explanation Algorithm;2024 35th Irish Signals and Systems Conference (ISSC);2024-06-13
2. Context Sensitive Detection of Long-term Elderly Behavior Change;2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA);2023-09-20
3. Smart Assistance to Reduce the Fear of Falling in Parkinson Patients Using IoT;Wireless Personal Communications;2023-03-23
4. A Review of Abnormal Behavior Detection in Activities of Daily Living;IEEE Access;2023
5. Deep Learning, Mining, and Collaborative Clustering to Identify Flexible Daily Activities Patterns;Sensors;2022-06-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3