Digital twin for CNC machine tool: modeling and using strategy
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
http://link.springer.com/article/10.1007/s12652-018-0946-5/fulltext.html
Reference26 articles.
1. Cho S, Asfour S, Onar A, Kaundinya N (2005) Tool breakage detection using support vector machine learning in a milling process. Int J Mach Tools Manuf 45(3):241–249. https://doi.org/10.1016/j.ijmachtools.2004.08.016
2. Davis J, Edgar T, Porter J, Bernaden J, Sarli M (2012) Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 47(12):145–156. https://doi.org/10.1016/j.compchemeng.2012.06.037
3. Elmqvist H, Mattsson SE, Otter M (1998) Modelica—an international effort to design an object-oriented modeling language, pp 333–339
4. Fei T, Meng Z, Cheng J, Qinglin QI (2017) Digital twin workshop: a new paradigm for future workshop. Comput Integr Manuf Systems 23(1):1–9. https://doi.org/10.13196/j.cims.2017.01.001
5. Glaessgen E, D Stargel (2012) The Digital Twin paradigm for future NASA and US Air Force Vehicles. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference Aiaa/asme/ahs Adaptive Structures Conference Aiaa. https://doi.org/10.2514/6.2012-1818
Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Digital twin-driven intelligent operation and maintenance platform for large-scale hydro-steel structures;Advanced Engineering Informatics;2024-10
2. Current state and emerging trends in advanced manufacturing: smart systems;The International Journal of Advanced Manufacturing Technology;2024-09-03
3. A systematic multi-layer cognitive model for intelligent machine tool;Journal of Intelligent Manufacturing;2024-08-30
4. Machine as a smart service: a hybrid knowledge graph approach;Flexible Services and Manufacturing Journal;2024-08-06
5. DT-CEPA: A digital twin-driven contour error prediction approach for machine tools based on hybrid modeling and sparse time series;Robotics and Computer-Integrated Manufacturing;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3