1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G. S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) Tensorflow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
2. Abraham B, Nair MS (2018) Computer-aided diagnosis of clinically significant prostate cancer from MRI images using sparse autoencoder and random forest classifier. Biocybern Biomed Eng 38(3):733–744
3. Agrafioti F, Hatzinakos D, Anderson AK (2012) ECG pattern analysis for emotion detection. IEEE Trans Affect Comput 3(1):102–115
4. Anderson A, Hsiao T, Metsis V (2017) Classification of emotional arousal during multimedia exposure. In: Proceedings of the 10th international conference on pervasive technologies related to assistive environments (PETRA). Association for Computing Machinery, pp 181–184
5. Ayata D, Yaslan Y, Kamaşak M. (2016) Emotion recognition via random forest and galvanic skin response: comparison of time based feature sets, window sizes and wavelet approaches. In: 2016 medical technologies national congress (TIPTEKNO). IEEE, pp 1–4