Building a computational model for mood classification of music by integrating an asymptotic approach with the machine learning techniques
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02145-1.pdf
Reference58 articles.
1. Abburi H, Akkireddy ESA, Gangashetti S, Mamidi R (2016) Multimodal sentiment analysis of telugu songs. In: SAAIP@ IJCAI, pp 48–52
2. Ahmad A, Paul A, Rathore MM (2016) An efficient divide-and-conquer approach for big data analytics in machine-to-machine communication. Neurocomputing 174:439–453
3. Ananthi M, Vijayakumar K (2020) Stock market analysis using candlestick regression and market trend prediction (CKRM). JAmb Intell Humaniz Comput 1–8
4. Aucouturier JJ, Bigand E (2013) Seven problems that keep MIR from attracting the interest of cognition and neuroscience. J Intell Inf Syst 41(3):483–497
5. Banerjee S (2017) A survey of prospects and problems in Hindustani classical raga identification using machine learning techniques. In: Proceedings of the first international conference on intelligent computing and communication, Springer, Singapore, pp 467–475
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Resource building and classification of Mizo folk songs;Natural Language Processing;2024-05-23
2. The Mathematical Analysis Model of Educational System in Music Courses in Colleges and Universities;Applied Mathematics and Nonlinear Sciences;2022-07-15
3. RIADA: A Machine-Learning Based Infrastructure for Recognising the Emotions of Spotify Songs;International Journal of Interactive Multimedia and Artificial Intelligence;2022
4. Multimodal Music Mood Classification Framework for Kokborok Music;Advances in Intelligent Systems and Computing;2021
5. Symmetry in computer-aided music composition system with social network analysis and artificial neural network methods;Journal of Ambient Intelligence and Humanized Computing;2020-08-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3