Ensemble approach for short term load forecasting in wind energy system using hybrid algorithm
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
http://link.springer.com/content/pdf/10.1007/s12652-020-01866-7.pdf
Reference55 articles.
1. Amarasinghe K, Marino DL, Manic M (2017) Deep neural networks for energy load forecasting, In: Proceedings of IEEE 26th international symposium on industrial electronics (ISIE) on kota kinabalu at Virginia Commonwealth University, pp 1483–1488
2. Barman M, Choudhury NBD (2019) Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept. Int J Energy 174:886–896
3. Cao Q, Ewing BT, Thompson MA (2012) Forecasting wind speed with recurrent neural networks. Int J Eur J Oper Res 221:148–154
4. Chapaloglou S, Nesiadis A, Iliadis P, Atsonios K, Nikolopoulos N, Grammelis P, Yiakopoulos C, Antoniadis I, Kakaras E (2019) Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system”. Int J Appl Energy 238:627–642
5. Chen Y, Peng X, Chu Y, Li W, Yuntao W, Ni L, Bao Y, Wang K (2017) Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Int J Appl Energy 195:659–670
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quasi Z source direct matrix converter based K- to three-phase wind energy conversion system using maximum constant boost current control modulation technique;Automatika;2024-08-08
2. Adaptive machine learning for forecasting in wind energy: A dynamic, multi-algorithmic approach for short and long-term predictions;Heliyon;2024-08
3. Statistical Comparison of Time Series Models for Forecasting Brazilian Monthly Energy Demand Using Economic, Industrial, and Climatic Exogenous Variables;Applied Sciences;2024-07-04
4. KnowDT: Empathetic dialogue generation with knowledge enhanced dependency tree;Applied Intelligence;2024-06-20
5. A novel hybrid pelican-particle swarm optimization algorithm (HPPSO) for global optimization problem;International Journal of System Assurance Engineering and Management;2024-06-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3