Author:
Cai Li,Papageorgiou Nikolaos S.,Rădulescu Vicenţiu D.
Abstract
AbstractWe consider a nonlinear parametric Dirichlet problem driven by the double phase differential operator. Using variational tools combined with critical groups, we show that for all small values of the parameter, the problem has at least three nontrivial bounded solutions which are ordered and we provide the sign information for all of them. Two solutions are of constant sign and the third one is nodal. Finally, we determine the asymptotic behavior of the nodal solution as the parameter converges to zero.
Funder
Government of Jiangsu Province
China Scholarship Council
Ministerul Cercetării şi Inovării
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Reference26 articles.
1. Brezis, H., Nirenberg, L.: $$H^1$$ versus $$C^1$$ local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317(5), 465–472 (1993)
2. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 195, 1917–1959 (2016)
3. Diaz, J.I., Saa, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 521–524 (1987)
4. Garcia Azorero, J., Manfredi, J., Peral Alonso, I.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2(3), 385–404 (2000)
5. Gasinski, L., Papageorgiou, N.S.: Exercises in Analysis. Part 2: Nonlinear Analysis. Springer, Cham (2016)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献