Author:
Ounis Hadjer,Sepulcre Juan Matías
Abstract
AbstractAs an extension of some classes of generalized almost periodic functions, in this paper we develop the notion of c-almost periodicity in the sense of Stepanov and Weyl approaches. In fact, we extend some basic results of this theory which were already demonstrated for the standard cases. In particular, we prove that every c-almost periodic function in the sense of Stepanov approach (in the sense of equi-Weyl or Weyl approaches, respectively) is also $$c^m$$
c
m
-almost periodic in the sense of Stepanov approach (in the sense of equi-Weyl or Weyl approaches, respectively) for each non-zero integer number m. This study is performed for both representative cases of functions defined on the real axis and with values in a Banach space and the complex functions defined on vertical strips in the complex plane.
Funder
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
Ministerio de Ciencia, Innovación y Universidades
Universidad de Alicante
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Reference25 articles.
1. Alvarez, E., Gomez, A., Pinto, M.: ($$\omega , c$$)-periodic functions and mild solutions to abstract fractional integro-differental equations. Electron. J. Qual. Theory Differ. Equ. 1(6), 1–8 (2018)
2. Andres, J., Bersani, A.M., Grande, R.F.: Hierarchy of almost-periodic function spaces. Rend. Mat. Ser. VII 26, 121–188 (2006)
3. Andres, J., Bersani, A.M., Leśniak, K.: On some almost-periodicity problems in various metrics. Acta Appl. Math. 65, 35–57 (2001)
4. Besicovitch, A.S.: Almost Periodic Functions. Dover, New York (1954)
5. Besicovitch, A.S., Bohr, H.: Almost periodicity and general trigonometric series. Acta Math. 57, 203–292 (1931)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献