Abstract
AbstractWe solve Cauchy problems for discrete holomorphic functions defined on the Gaussian integers, which leads to the existence of discrete holomorphic functions with arbitrarily fast growth. This proves that certain classes of functions are closed in the sense of mathematical morphology.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Reference20 articles.
1. Benjamini, I., Lovász, L.: Harmonic and analytic functions on graphs. J. Geom. 76, 2–15 (2003)
2. Bourbaki, N.: Éléments de mathématique. Théorie des ensembles. Chapitres I et II. Hermann & Cie, Paris (1954)
3. Cohn, P.M.: Universal Algebra, xv + 412 pp, 2nd edn. D. Reidel Publishing Co, Dortrecht (1981)
4. Duffin, R.J.: Basic properties of discrete analytic functions. Duke Math. J. 23, 335–363 (1956)
5. Ferrand, J.: Fonctions préharmoniques et fonctions préholomorphes. Bull. Sci. Math. 68, 152–180 (1944)