Abstract
AbstractGiven a point w in the open upper complex half-plane $$\Pi _{\mathord {+}}$$
Π
+
, we describe the set of possible values $$F_\sigma \left( {w}\right) $$
F
σ
w
of Stieltjes transforms $$F_\sigma \left( {z}\right) :=\int _{[\alpha ,\infty )}\left( {x-z}\right) ^{-1}\sigma \left( {\textrm{d}x}\right) $$
F
σ
z
:
=
∫
[
α
,
∞
)
x
-
z
-
1
σ
d
x
, $$z\in \Pi _{\mathord {+}}$$
z
∈
Π
+
, corresponding to solutions $$\sigma $$
σ
to a truncated matricial Stieltjes moment problem as intersection of two matrix balls.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献