Dual Convolution for the Affine Group of the Real Line

Author:

Choi Yemon,Ghandehari Mahya

Abstract

AbstractThe Fourier algebra of the affine group of the real line has a natural identification, as a Banach space, with the space of trace-class operators on $$L^2({{\mathbb {R}}}^\times , dt/ |t|)$$ L 2 ( R × , d t / | t | ) . In this paper we study the “dual convolution product” of trace-class operators that corresponds to pointwise product in the Fourier algebra. Answering a question raised in work of Eymard and Terp, we provide an intrinsic description of this operation which does not rely on the identification with the Fourier algebra, and obtain a similar result for the connected component of this affine group. In both cases we construct explicit derivations on the corresponding Banach algebras, verifying the derivation identity directly without requiring the inverse Fourier transform. We also initiate the study of the analogous Banach algebra structure for trace-class operators on $$L^p({{\mathbb {R}}}^\times , dt/ |t|)$$ L p ( R × , d t / | t | ) for $$p\in (1,2)\cup (2,\infty )$$ p ( 1 , 2 ) ( 2 , ) .

Funder

National Science Foundation

London Mathematical Society

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3