Abstract
AbstractWe investigate some spectral properties of a second order differential-difference operator $$J_{\alpha ,\beta }$$
J
α
,
β
on $$L^2((-\pi ,\pi ),d\mu _{\alpha , \beta })$$
L
2
(
(
-
π
,
π
)
,
d
μ
α
,
β
)
, $$\alpha ,\beta \in \mathbb {R}$$
α
,
β
∈
R
, called the Jacobi–Dunkl operator of compact type. Using an idea of Hajmirzaahmad, in exotic cases, e.g. when at least one of the two parameters $$\alpha ,\beta $$
α
,
β
is $$\le -1$$
≤
-
1
, we construct exotic orthonormal bases that consist of eigenfunctions of $$J_{\alpha ,\beta }$$
J
α
,
β
. This allows one to consider natural self-adjoint exotic extensions of $$J_{\alpha ,\beta }$$
J
α
,
β
and the corresponding exotic Jacobi–Dunkl and Jacobi–Dunkl–Poisson semigroups.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Reference20 articles.
1. Arenas, A., Labarga, E., Nowak, A.: Exotic multiplicity functions and heat maximal operators in certain Dunkl settings. Integral Transforms Spec. Funct. 29, 771–793 (2018)
2. Ben Salem, N., Samaali, T.: Hilbert transform and related topics associated with Jacobi–Dunkl operators of compact and noncompact types. Adv. Pure Appl. Math. 2, 367–388 (2011)
3. Chouchene, F.: Harmonic analysis associated with the Jacobi–Dunkl operator on $$]-\frac{\pi }{2},\frac{\pi }{2}[$$. J. Comput. Appl. Math. 178, 75–89 (2005)
4. Chouchene, F., Haouala, I.: Dirichlet theorem for Jacobi–Dunkl expansions. Numer. Funct. Anal. Optim. 42, 109–121 (2021)
5. Hajmirzaahmad, M.: Jacobi polynomial expansions. J. Math. Anal. Appl. 181, 35–61 (1994)