Octonionic Kerzman–Stein Operators

Author:

Constales Denis,Kraußhar Rolf Sören

Abstract

AbstractIn this paper we consider generalized Hardy spaces in the octonionic setting associated to arbitrary Lipschitz domains where the unit normal field exists almost everywhere. First we discuss some basic properties and explain structural differences to the associative Clifford analysis setting. The non-associativity requires special attention in the definition of an appropriate inner product and hence in the definition of a generalized Szegö projection. Whenever we want to apply classical theorems from reproducing kernel Hilbert spaces we first need to switch to the consideration of real-valued inner products where the Riesz representation theorem holds. Then we introduce a generalization of the dual Cauchy transform for octonionic monogenic functions which represents the adjoint transform with respect to the real-valued inner product $$\langle \cdot , \cdot \rangle _0$$ · , · 0 together with an associated octonionic Kerzman–Stein operator and related kernel functions. Also in the octonionic setting, the Kerzman–Stein operator that we introduce turns out to be a compact operator. A motivation behind this approach is to find an approximative method to compute the Szegö projection of octonionic monogenic functions offering a possibility to tackle BVP in the octonions without the explicit knowledge of the octonionic Szegö kernel which is extremely difficult to determine in general. We also discuss the particular cases of the octonionic unit ball and the half-space. Finally, we relate our octonionic Kerzman–Stein operator to the Hilbert transform and particularly to the Hilbert–Riesz transform in the half-space case.

Funder

Universität Erfurt

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics

Reference28 articles.

1. Baez, J.: The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002)

2. Bell, S.: The Cauchy Transform, Potential Theory and Conformal Mapping. CRC Press Inc., Boca Raton (1992)

3. Bernstein, S., Lanzani, L.: Szegö projections for Hardy spaces of monogenic functions and applications. Int. J. Math. Math. Sci. 29, 613–624 (2002)

4. Pitman Research Notes in Mathematics;F Brackx,1982

5. Brackx, F., De Schepper, H.: The Hilbert transform on a smooth closed hypersurface. Cubo Math. J. 10(2), 83–106 (2008)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gilbert’s Conjecture and a New Way to Octonionic Analytic Functions from the Clifford Analysis;The Journal of Geometric Analysis;2024-04-29

2. Octonionic monogenic and slice monogenic Hardy and Bergman spaces;Forum Mathematicum;2024-01-02

3. Weyl Calculus Perspective on the Discrete Stokes’ Formula in Octonions;Advances in Computer Graphics;2023-12-24

4. Cauchy Formulae and Hardy Spaces in Discrete Octonionic Analysis;Complex Analysis and Operator Theory;2023-12-09

5. Towards Discrete Octonionic Analysis;Springer Proceedings in Mathematics & Statistics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3