Abstract
AbstractIn the hyperbolic disc (or more generally in real hyperbolic spaces) we consider the horospherical Radon transform R and the geodesic Radon transform X. Composition with their respective dual operators yields two convolution operators on the disc (with respect to the hyperbolic measure). We describe their convolution kernels in comparison with those of the corresponding operators on a homogeneous tree T, separately studied as acting on functions on the vertices or on the edges. This leads to a new theory of spherical functions and Radon inversion on the edges of a tree.
Funder
Università degli Studi di Roma La Sapienza
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Reference34 articles.
1. Ahumada Bustamante, G.: Analyse harmonique sur l’espace des chemins d’un arbre, thèse de doctorat, Université de Paris-Sud (1988). http://www.sudoc.fr/023000686
2. Alberti, G.S., Bartolucci, F., De Mari, F., De Vito, E.: Unitarization and inversion formulae for the Radon transform between dual pairs. SIAM J. Math. Anal. 51(6), 4356–4381 (2019). https://doi.org/10.1137/18M1225628
3. Atanasi, L.: Radon transform on affine buildings of rank three. J. Austral. Math. Soc. Ser. A 66(1), 66–89 (1999). https://doi.org/10.1017/S1446788700036284
4. Atanasi, L.: Radon transforms on $$\widetilde{A_n}$$ buildings. Math. Proc. Camb. Philos. Soc. 128(3), 425–439 (2000). https://doi.org/10.1017/S0305004199004272
5. Berenstein, C.A., Casadio Tarabusi, E.: Inversion formulas for the k-dimensional Radon transform in real hyperbolic spaces. Duke Math. J. 62(3), 613–631 (1991). https://doi.org/10.1215/S0012-7094-91-06227-7
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Axiomatic Construction of Trees from Boundary Arcs;Mediterranean Journal of Mathematics;2022-06-23