Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Reference15 articles.
1. Adhikari, S., Anoop, V.P., Parui, S.: Existence of an extremal of Dunkl-type Sobolev inequality and Stein–Weiss inequality for D-Riesz potential. Complex Anal. Oper. Theory 15, 28 (2021). https://doi.org/10.1007/s11785-020-01068-1
2. Anker, J.-P.: An introduction to Dunkl theory and its analytic aspects. In: Analytic, Algebraic and Geometric Aspects of Differential Equations, Trends Math, pp. 3–58. Birkhäuser/Springer, Cham (2017)
3. Anker, J.-P., Dziubański, J., Hejna, A.: Harmonic functions, conjugate harmonic functions and the Hardy space $$H^1$$ in the rational Dunkl setting. J. Fourier Anal. Appl. 25(5), 2356–2418 (2019). https://doi.org/10.1007/s00041-019-09666-0
4. Bakry, D., Coulhon, T., Ledoux, M., Saloff-Coste, L.: Sobolev inequalities in deguise. Indiana Univ. Math. J. 44(4), 1033–1074 (1995)
5. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré Non Linéaire 23(1987), 245–287 (1987)