Global Properties of Eigenvalues of Parametric Rank One Perturbations for Unstructured and Structured Matrices

Author:

Ran André C. M.ORCID,Wojtylak MichałORCID

Abstract

AbstractGeneral properties of eigenvalues of $$A+\tau uv^*$$ A + τ u v as functions of $$\tau \in {\mathbb {C} }$$ τ C or $$\tau \in {\mathbb {R} }$$ τ R or $$\tau ={{\,\mathrm{{e}}\,}}^{{{\,\mathrm{{i}}\,}}\theta }$$ τ = e i θ on the unit circle are considered. In particular, the problem of existence of global analytic formulas for eigenvalues is addressed. Furthermore, the limits of eigenvalues with $$\tau \rightarrow \infty $$ τ are discussed in detail. The following classes of matrices are considered: complex (without additional structure), real (without additional structure), complex H-selfadjoint and real J-Hamiltonian.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics

Reference43 articles.

1. Arlinskiĭ, Yu.M., Hassi, S., de Snoo, H.S.V., Tsekanovskiĭ, E.R.: One-dimensional perturbations of selfadjoint operators with finite or discrete spectrum. Fast algorithms for structured matrices: theory and applications. Contemp. Math. 323, 419–433 (2001)

2. Bart, H., Gohberg, I., Kaashoek, M.A., Ran, A.C.M.: Factorization of Matrix and Operator Functions: The State Space Method. Oper. Theory Adv. Appl. 178, Birkhauser, Basel etc. 2008

3. Batzke, L., Mehl, C., Ran, A.C.M., Rodman, L.: Generic rank-$k$ perturbations of structured matrices. In: Eisner, T., Jacob, B., Ran, A., Zwart, H. (eds.) Operator Theory, Function Spaces, and Applications IWOTA. Springer, Berlin (2016)

4. Baumgärtel. H.: Analytic Perturbation Theory for Matrices and Operators, Oper. Theory Adv. Appl. 15, Birkhäuser, Basel etc. (1985)

5. Bierkens, J., Ran, A.C.M.: A singular M-matrix perturbed by a nonnegative rank one matrix has positive principal minors; is it D-stable? Linear Algebra Appl. 457, 191–208 (2014)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small Rank Perturbations of H-Expansive Matrices;Operator Theory: Advances and Applications;2024

2. Low-Rank Para-Hermitian Matrix EVD via Polynomial Power Method with Deflation;2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP);2023-12-10

3. An interlacing result for Hermitian matrices in Minkowski space;Linear Algebra and its Applications;2023-07

4. Global Properties of Eigenvalues of Parametric Rank One Perturbations for Unstructured and Structured Matrices II;Complex Analysis and Operator Theory;2022-08-05

5. A note on a conjecture concerning rank one perturbations of singular M-matrices;Quaestiones Mathematicae;2021-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3