Mono- and Multi-Representational Learning of the Covariational Aspect of Functional Thinking

Author:

Rolfes TobiasORCID,Roth JürgenORCID,Schnotz WolfgangORCID

Abstract

AbstractUsing multiple external representations is advocated for learning in STEM education. This learning approach assumes that multiple external representations promote richer mental representations and a deeper understanding of the concept. In mathematics, the concept of function is a prototypical content area in which multiple representations are used. However, there are hardly any experimental studies investigating the effect of learning functional thinking with multiple representations compared to learning with only one form of representation. Therefore, this article reports on a quasi-experimental intervention study with students from Grade 7, using three measurement time points. The study compared the multi-representational learning of functional thinking with both tables and graphs with mono-representational learning with either tables or graphs. The results show that multi-representational learning led to advantages in learning qualitative functional thinking. However, in quantitative functional thinking, learning with both graphs and tables did not result in higher learning gains than learning exclusively with graphs. Furthermore, students were better able to transfer their knowledge from graphs to tables than vice versa. The results also indicate that multi-representational learning requires more time than mono-representational learning but can lead to higher learning gains. In sum, the results show that the effect of learning with representations is a complex interaction process between learning content and the forms of representation.

Funder

IPN – Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik an der Universität Kiel

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3