Experimental Study on Erosion Process of Expressway Embankment Subjected to Tsunami After Earthquake

Author:

Hayashizaki Shota,Kawajiri ShunzoORCID,Kurokawa Tadanobu,Ogasawara Akinobu,Kawaguchi Takayuki,Nakamura Dai,Minabe Yuki

Abstract

AbstractOn March 11, 2011, the Great East Japan Earthquake triggered tsunamis that reached extensive areas along Japan’s Pacific coast. There have been instances where embankments built on plains for expressways mitigated the impact of tsunami damage. In the vicinity of the Sendai-tobu highway, the presence of an embankment approximately 10 m high altered the course of the advancing tsunami, thereby preventing flooding. Establishing a multiplied defense system using road embankments necessitates understanding the deformation and collapse mechanisms of road embankments impacted by tsunamis following seismic motion. In this study, overtopping experiments were conducted by first applying seismic motion to model embankments, followed by introducing the first wave of breaking bores, and then simulating prolonged overtopping by the tsunami. The experimental findings indicated that within the embankments impacted by the tsunami, there was an immediate increase in what is presumed to be pore air pressure following the arrival of the breaking bores, followed by a rise in pore water pressure during subsequent overtopping. Moreover, embankments subjected to seismic motion exhibited accelerated erosion following the overtopping. These results imply that when embankments settle due to an earthquake, leading to relatively higher anticipated inundation depths and the potential for overtopping, it is crucial to implement measures to prevent the settlement of the crest for embankments expected to serve as part of a multiplied defense system.

Funder

NEXCO Group Companies’ Support Fund to Disaster Prevention Measures on Expressways

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3