3D Numerical Cross-Section Analysis of a Tapered Beam Slice

Author:

Sarhadi AliORCID,Eder Martin A.

Abstract

AbstractCross-section analysis is an important tool used to recover stresses and strains in a structure at specific cross-sections of arbitrary geometries, without the need for a full 3D model. This is particularly essential for large-scale structures such as aircrafts, wind turbine blades, etc. where making a full model can be computationally very expensive or impractical. The majority of currently available cross-section analysis frameworks are based on stepwise prismatic assumptions, which are hardly suited for the analysis of tapered beams. In fact, high-fidelity stress analysis obtained from analytical and full 3D models shows that predictions of stepwise prismatic approximations can significantly deviate from the correct solution of tapered beams. In this work, a prismatic 3D cross-section analysis method is extended to analyze a symmetrically tapered finite cross-section slice. In this study, the cross-section slice is discretized with 8-node and 20-node solid elements. The boundary conditions are applied as six constraint equations via the Lagrange multiplier method. The external nodal forces acting on the cross-section faces are obtained from the equivalent tractions induced by the cross-section forces. The developed numerical model is validated against the exact analytical solutions of a wedge as well as commercial finite element (FE) software COMSOL and it is shown that the numerically predicted displacement and stress fields agree well with those provided by the wedge’s analytical solution and the FE COMSOL results. This work contributes to the advancement of high-fidelity numerical tapered cross-section analysis methods with an application for many engineering structures.

Funder

Innovationsfonden

Villum Fonden

Technical University of Denmark

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3