In silico prediction models for thyroid peroxidase inhibitors and their application to synthetic flavors

Author:

Seo Mihyun,Lim Changwon,Kwon HoonjeongORCID

Abstract

AbstractSystematic toxicity tests are often waived for the synthetic flavors as they are added in a very small amount in foods. However, their safety for some endpoints such as endocrine disruption should be concerned as they are likely to be active in low levels. In this case, structure–activity-relationship (SAR) models are good alternatives. In this study, therefore, binary, ternary, and quaternary prediction models were designed using simple or complex machine-learning methods. Overall, hard-voting classifiers outperformed other methods. The test scores for the best binary, ternary, and quaternary models were 0.6635, 0.5083, and 0.5217, respectively. Along with model development, some substructures including primary aromatic amine, (enol)ether, phenol, heterocyclic sulfur, and heterocyclic nitrogen, dominantly occurred in the most highly active compounds. The best predicting models were applied to synthetic flavors, and 22 agents appeared to have a strong inhibitory potential towards TPO activities.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3