Abstract
AbstractAccurately predicting free energy differences is essential in realizing the full potential of rational drug design. Unfortunately, high levels of accuracy often require computationally expensive QM/MM Hamiltonians. Fortuitously, the cost of employing QM/MM approaches in rigorous free energy simulation can be reduced through the use of the so-called “indirect” approach to QM/MM free energies, in which the need for QM/MM simulations is avoided via a QM/MM “correction” at the classical endpoints of interest. Herein, we focus on the computation of QM/MM binding free energies in the context of the SAMPL8 Drugs of Abuse host–guest challenge. Of the 5 QM/MM correction coupled with force-matching submissions, PM6-D3H4/MM ranked submission proved the best overall QM/MM entry, with an RMSE from experimental results of 2.43 kcal/mol (best in ranked submissions), a Pearson’s correlation of 0.78 (second-best in ranked submissions), and a Kendall $$\tau$$
τ
correlation of 0.52 (best in ranked submissions).
Funder
National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Computer Science Applications,Drug Discovery
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献