Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery

Author:

Rodríguez-Pérez Raquel,Bajorath JürgenORCID

Abstract

AbstractThe support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is that it operates in feature spaces of increasing dimensionality. Hence, SVM conceptually departs from the paradigm of low dimensionality that applies to many other methods for chemical space navigation. The SVM approach is applicable to compound classification, and ranking, multi-class predictions, and –in algorithmically modified form– regression modeling. In the emerging era of deep learning (DL), SVM retains its relevance as one of the premier ML methods in chemoinformatics, for reasons discussed herein. We describe the SVM methodology including strengths and weaknesses and discuss selected applications that have contributed to the evolution of SVM as a premier approach for compound classification, property predictions, and virtual compound screening.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Computer Science Applications,Drug Discovery

Reference48 articles.

1. Vapnik V (1979) Estimation of dependencies based on empirical data [in Russian]. Nauka, Moscow

2. Vapnik V (1982) Estimation of dependencies based on empirical data. Springer, New York

3. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

4. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

5. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3