Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications

Author:

Morawietz TobiasORCID,Artrith NongnuchORCID

Abstract

AbstractAtomistic simulations have become an invaluable tool for industrial applications ranging from the optimization of protein-ligand interactions for drug discovery to the design of new materials for energy applications. Here we review recent advances in the use of machine learning (ML) methods for accelerated simulations based on a quantum mechanical (QM) description of the system. We show how recent progress in ML methods has dramatically extended the applicability range of conventional QM-based simulations, allowing to calculate industrially relevant properties with enhanced accuracy, at reduced computational cost, and for length and time scales that would have otherwise not been accessible. We illustrate the benefits of ML-accelerated atomistic simulations for industrial R&D processes by showcasing relevant applications from two very different areas, drug discovery (pharmaceuticals) and energy materials. Writing from the perspective of both a molecular and a materials modeling scientist, this review aims to provide a unified picture of the impact of ML-accelerated atomistic simulations on the pharmaceutical, chemical, and materials industries and gives an outlook on the exciting opportunities that could emerge in the future.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Computer Science Applications,Drug Discovery

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3