Author:
García-Marín Javier,Rodríguez-Puyol Diego,Vaquero Juan J.
Abstract
AbsractPseudokinases have received increasing attention over the past decade because of their role in different physiological phenomena. Although pseudokinases lack several active-site residues, thereby hindering their catalytic activity, recent discoveries have shown that these proteins can play a role in intracellular signaling thanks to their non-catalytic functions. Integrin-linked kinase (ILK) was discovered more than two decades ago and was subsequently validated as a promising target for neoplastic diseases. Since then, only a few small-molecule inhibitors have been described, with the V-shaped pyrazole Cpd22 being the most interesting and characterized. However, little is known about its detailed mechanism of action at atomic level. In this study, using a combination of computational chemistry methods including PELE calculations, docking, molecular dynamics and experimental surface plasmon resonance, we were able to prove the direct binding of this molecule to ILK, thus providing the basis of its molecular recognition by the protein and the effect over its architecture. Our breakthroughs show that Cpd22 binding stabilizes the ILK domain by binding to the pseudo-active site in a similar way to the ATP, possibly modulating its scaffolding properties as pseudokinase. Moreover, our results explain the experimental observations obtained during Cpd22 development, thus paving the way to the development of new chemical probes and potential drugs.
Graphical abstract
Funder
Instituto de Salud Carlos III
Comunidad de Madrid
Ministerio de Ciencia e Innovación
Universidad de Alcalá
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Computer Science Applications,Drug Discovery
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献