A Voronoi strain-based method for granular materials and continua

Author:

Frenning GöranORCID

Abstract

AbstractIn a recent article (Frenning in Comp Part Mech 24:1–4, 2021), we demonstrated that a Delaunay-based strain estimate could be used as a starting point for the development of a particle-based method for continua. In this article, we argue that the Voronoi diagram, dual to the previously used Delaunay tetrahedralization, provides a more natural description of the underlying particulate system. For this reason, a Voronoi-based estimate of the deformation gradient is derived and used to the same effect. Although the gradient vectors cease to be antisymmetric, sums over nearest neighbors vanish, which results in a formulation that not only is linearly complete but also satisfies the patch test irrespective of initial particle placement. Pairwise forces, inferred from the local (nonaffine) deformation of each bond or contact, impart a physical stabilization. Forces are obtained from a discrete Lagrangian, thus ensuring that linear and angular momenta are conserved in the absence of external forces and torques. Methods to enforce different types of boundary conditions are described; these are exact for linear displacements, for constant stresses and for free surfaces. The performance of the method is assessed in a number of numerical tests.

Funder

VINNOVA

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Fluid Flow and Transfer Processes,Modeling and Simulation,Numerical Analysis,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3