SPH modelling of hydrodynamic lubrication: laminar fluid flow–structure interaction with no-slip conditions for slider bearings

Author:

Paggi Marco,Amicarelli Andrea,Lenarda Pietro

Abstract

AbstractThe FOSS CFD-SPH code SPHERA v.9.0.0 (RSE SpA) is improved to deal with “fluid–solid body” interactions under no-slip conditions and laminar regimes for the simulation of hydrodynamic lubrication. The code is herein validated in relation to a uniform slider bearing (i.e. for a constant lubricant film depth) and a linear slider bearing (i.e. for a film depth with a linear profile variation along the main flow direction). Validations refer to comparisons with analytical solutions, herein generalized to consider any Dirichlet boundary condition. Further, this study allows a first code validation of the “fluid–fixed frontier” interactions under no-slip conditions. With respect to the most state-of-the-art models (2D codes based on Reynolds’ equation for fluid films), the following distinctive features are highlighted: (1) 3D formulation on all the terms of the Navier–Stokes equations for incompressible fluids with uniform viscosity; (2) validations on both local and global quantities (pressure and velocity profiles; load-bearing capacity); (3) possibility to simulate any 3D topology. This study also shows the advantages of using a CFD-SPH code in simulating the inertia and 3D effects close to the slider edges, and it opens new research directions overcoming the limitations of the codes for hydrodynamic lubrication based on the Reynolds’ equation for fluid films. This study finally allows SPHERA to deal with hydrodynamic lubrication and improves the code for other relevant application fields involving fluid–structure interactions (e.g. transport of solid bodies by floods and earth landslides; rock landslides). SPHERA is developed and distributed on a GitHub public repository.

Funder

Scuola IMT Alti Studi Lucca

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Fluid Flow and Transfer Processes,Modelling and Simulation,Numerical Analysis,Civil and Structural Engineering,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3