Numerical modelling of particle entrainment in the wheel–rail interface

Author:

Maramizonouz SadafORCID,Nadimi SadeghORCID,Skipper William A.,Lewis Stephen R.,Lewis Roger

Abstract

AbstractThe process of applying sand particles to increase the traction between wheel and rail is reported to be less than 20% efficient. To better understand entrainment efficiency, the process is simulated using the Discrete Element Method. The simulation results are validated against full-scale experimental observations in terms of entrainment efficiency and particle velocity for ten case studies with different positioning of the sand nozzle. The numerical simulations confirm the experimental observations wherein the highest efficiency can be achieved when the sander is aimed at the wheel/rail nip. When aiming the sander at the wheel, the values of entrainment efficiency from simulations and experiments show some discrepancy which can be related to the numerical assumptions. Calculating coefficients of traction between the rail and wheel from the simulation data for the four cases of an un-sanded contact, and with the sander aimed at the rail, the nip, and the wheel (all with the same angle) show an increase in the coefficient of traction for all sanded cases compared to the un-sanded case.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Fluid Flow and Transfer Processes,Modeling and Simulation,Numerical Analysis,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3