Assessment and validation of SPH modeling for nano-indentation

Author:

Shen HaoORCID,Brousseau EmmanuelORCID,Kulasegaram SivakumarORCID

Abstract

AbstractNano-indentation tests are important techniques in material science. Over the past two decades, many numerical approaches have been proposed to model and simulate the nano-indentation process. In this paper, the possibility of modeling the process using a meshless numerical technique, known as smooth particle hydrodynamics (SPH), is explored. In particular, the SPH modeling of nano-indentation is conducted using the ANSYS/LS-DYNA software using three different published studies as benchmarks. More specifically, SPH results reported by Guo et al. (J Semicond 36:083007, 2015) when nano-indenting a KPD crystal were used first to verify the validity of the SPH model established in this work. Following this, the outcomes of further SPH simulations were found to compare well against finite element modeling and experimental results reported in Dao et al. (Acta Mater 49:3899–3918, 2001) and Karimzadeh et al. (Comput Mater Sci 81:595–600, 2014) for both micro- and nano-indentation, respectively. These observations suggest that SPH is a technique with the potential to be considered more widely by researchers investigating high strain, or strain rate, deformation phenomena on the nanoscale. For example, the presented research on the development of a SPH-based nano-indentation model lays the foundations toward formulating a comprehensive model for the accurate simulation of nanoscale tool-based machining processes.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Fluid Flow and Transfer Processes,Modeling and Simulation,Numerical Analysis,Civil and Structural Engineering,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3