Discrete element model for effective electrical conductivity of spark plasma sintered porous materials

Author:

Nisar F.ORCID,Rojek J.,Nosewicz S.,Szczepański J.,Kaszyca K.,Chmielewski M.

Abstract

AbstractThis paper aims to analyse electrical conduction in partially sintered porous materials using an original resistor network model within discrete element framework. The model is based on sintering geometry, where two particles are connected via neck. Particle-to-particle conductance depends on neck size in sintered materials. Therefore, accurate evaluation of neck size is essential to determine conductance. The neck size was determined using volume preservation criterion. Additionally, grain boundary correction factor was introduced to compensate for any non-physical overlaps between particles, particularly at higher densification. Furthermore, grain boundary resistance was added to account for the porosity within necks. For numerical analysis, the DEM sample was generated using real particle size distribution, ensuring a heterogeneous and realistic microstructure characterized by a maximum-to-minimum particle diameter ratio of 15. The DEM sample was subjected to hot press simulation to obtain geometries with different porosity levels. These representative geometries were used to simulate current flow and determine effective electrical conductivity as a function of porosity. The discrete element model (DEM) was validated using experimentally measured electrical conductivities of porous NiAl samples manufactured using spark plasma sintering (SPS). The numerical results were in close agreement with the experimental results, hence proving the accuracy of the model. The model can be used for microscopic analysis and can also be coupled with sintering models to evaluate effective properties during the sintering process.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3