Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary)

Author:

Hrotkó KárolyORCID,Gyeviki Márta,Sütöriné Diószegi Magdolna,Magyar Lajos,Mészáros Róbert,Honfi Péter,Kardos Levente

Abstract

AbstractThis work considers dust deposition and the heavy metal (HM) content on leaves of urban trees (Acer platanoides L. ‘Globosum,’ Fraxinus excelsior L. ‘Westhof’s Glorie’ and Tilia tomentosa Moench.) in order to estimate the trees’ capacity to remove dust and HM from the air. Leaves were collected from the Buda Arboretum and from different streets of heavy traffic in Budapest, Hungary, during 2015 and 2016. At each site, five trees were sampled by collecting 6 leaves from each tree from the height of 2–3 m. Dust deposits on the leaves were removed by soaking the fresh foliage in distilled water for 20 h and then washed with ultrasound shaking. Afterward, the leaves were dried to constant weight and then they were digested in nitric acid–hydrogen peroxide treatment, and their Pb, Fe, Ni, Zn and Cu contents were measured using an inductively coupled plasma (ICP AS) spectrometer. The removed dust deposit was dried, and after a similar digestion treatment the Pb, Fe, Ni, Zn and Cu contents were measured using an AURORA AI 1200 AAS appliance. The HM deposit was calculated in mg m–2 leaf surface area. In 2015, the amount of foliar dust deposit from spring to autumn increased from 86.3 to 270.2 mg m–2. The most efficient tree species in trapping dust on their leaves was the silver linden (98.5–123.5 mg m−2), followed by the Norway maple (74.2–84.8 mg m−2) and the common ash (62.8–74.6 mg m−2). The deposit of HM elements showed seasonal differences: the quantity of Fe and Pb deposit on autumnal leaves increased five- to tenfold, while other heavy metals did not show accumulation. Silver linden with its pubescent (hairy) leaf surface proved to be most efficient in entrapping and retaining dust and heavy metals. The 60–100% higher Pb and Fe content of autumnal leaves indicate that over the season leaves may absorb Fe and Pb from the foliar dust. Our results confirmed that the foliar dust is a potential indicator for monitoring the HM content in the air. We also show that foliar dust deposits should be considered when estimating the capacity of urban trees to clean the air.

Funder

Hungarian Scientific Research Fund

Ministry for Innovation and Technology

Szent István University

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3