Assessment and abatement of the eco-risk caused by mine spoils in the dry subtropical climate

Author:

Alekseenko Alexey V.ORCID,Drebenstedt CarstenORCID,Bech JaumeORCID

Abstract

AbstractThe highly rugged mountainous land topography of the Novorossiysk industrial agglomeration (NW Caucasus, Krasnodar Krai, Russia) and arid climate limit the restoration abilities of disturbed mine lands. Abandoned waste-rock dumps of a marl quarry occupy an area of ca. 150,000 m2 next to the cement plant, residential districts, and a commercial seaport. To assess the eco-risk, topsoil horizons of urban and mine-site Technosols and background Rendzinas were sampled and analyzed; measurements of particulate matter fractions PM1, PM2.5, PM4, and PM10 were conducted throughout the agglomeration. Fugitive dust emission from the unreclaimed marl dumps raises the PM2.5 content in the air by a factor of 2.68 on average. The high sorption capacity of the fine eluvium results in the accumulation of urban emissions by the dust and contributes to the subsequent soil pollution; the Cumulative Pollution Index of pedochemical anomalies reaches the high-risk level over the areas of up to 5 km2. Environmental threats caused by the mine dumps can be assessed more reliably by means of land zoning based on accumulated environmental damage indicators and the debris flow and waterspout risk calculation. To abate the technogenic impact caused by the mine spoils, reclamation actions must be taken including soil stabilization on sensitive sites by application of geosynthetic cover, hydroseeding of the mixture of soil improvers and seeds of herbaceous plants on the slopes, and anti-erosion plantation of cades (Juniperus oxycedrus L.) and smoke trees (Cotinus coggygria Scop.) at subhorizontal surfaces.

Funder

Technische Universität Bergakademie Freiberg

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3